Home Page   |   Site Map   |   Contact
Path :  www.lphg.ch Ph.D. { Web Version } Appendix { Appendix D } D.3.1
Previous  |  Next
CV
Table of Contents
{ Abstract / Résumé }
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
{ Appendix A }
{ Appendix B }
{ Appendix C }
D.1 : Fourier Transforms
D.2 : Gaussian Function
Ph.D.  /  { Web Version }  /  Appendix  /  { Appendix D }  /  D.3.1 : Matlab FFT and Gaussian example (Theory)
MBI
Physics Diploma
Photos
Post-Doc
Other parts
{ Appendix E }
D.3.2 : Matlab FFT and Gaussian example (Example)
D.4 : References

D.3     Matlab FFT and Gaussian example

D.3.1      Theory

The Matlab fast Fourier transform <fft> of a linearly discrete function y(fn) of the frequency fn with steps of df, is a linearly discrete function Y(tn) of the time tn (impulse response) with steps of dt, n Î [1..N]. With the inverse Fourier transform <ifft>, y(fn) is calculated from Y(tn). Optimal calculation is found when N=2m, m integer. To obtain a linear scale from negative to positive positions, the Matlab function <fftshift> has to be applied to the discrete Fourier transform, i.e. <fftshift(fft)> or <fftshift(ifft)>. The definition of fn and tn are


(D-12)



(D-13)


The relation between df and dt are


(D-14)


If fn (or tn) is not symmetric across zero, a constant phase shift factor is added to the Fourier or inverse Fourier transform. To increase the Fourier transform resolution, padding with zeros is possible directly with Matlab by calling the function with a size parameter, i.e. <fft(y(tn),M)>. In this case, the number M replace the parameter N in the equations (D-12), (D-14) and (D-13). It should be remembered that the maximal frequency that can be found by iFFT is determined by dt as fN=1/dt.



Top   |   JavaScript
Path :  www.lphg.ch Ph.D. { Web Version } Appendix { Appendix D } D.3.1
Previous  |  Next